WWW.ARDUER.COM

A Quick Refresher on CUDA

CUDA is the hardware and software architecture that enables NVIDIA GPUs to execute
programs written with C, C++, Fortran, OpenCL, DirectCompute, and other languages. A
CUDA program calls parallel kemels. A kemel executes in parallel across a set of parallel
threads. The programmer or compiler organizes these threads in thread blocks and grids of
thread blocks. The GPU instantiates a kemel program on a grid of parallel thread blocks.
Each thread within a thread block executes an instance of the kemel, and has a thread ID
within its thread block, program counter, registers, per-thread private memory, inputs, and

Thread

:

%

Thread Block

per-Thread Private
Local Memory

per-Block
Shared Memory

CUDA Hierarchy of threads, blocks, and grids, with corresponding
per-thread private, per-block shared, and per-application global

memory spaces.

per-

Application
Context
Global
Memory

output results.

A thread block is a set of
concurrently executing threads
that can cooperate among
themselves through barrier
synchronization and shared
memory. A thread block has a
block ID within its grid.

A grid is an array of thread
blocks that execute the same
kernel, read inputs from global
memory, write results to global
memory, and synchronize
between dependent kemnel calls.
In the CUDA parallel
programming model, each
thread has a per-thread private
memory space, used for register
spills, function calls, and C
automatic array variables. Each
thread block has a per-Block
shared memory space, used for
inter-thread communication,
data sharing, and result sharing
in parallel algorithms. Grids of
thread blocks share results in
Global Memory space after
kernel-wide global
synchronization.

WWW.ARDUER.COM

Hardware Execution

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes
one or more kernel grids; a streaming multiprocessor (SM) executes one or more thread blocks;
and CUDA cores and other execution units in the SM execute threads. The SM executes
threads in groups of 32 threads called a warp. While programmers can generally ignore warp
execution for functional correctness and think of programming one thread, they can greatly
improve performance by having threads in a warp execute the same code path and access
memory in nearby addresses.

An Overview of the Fermi Architecture

The first Fermi based GPU, implemented with 3.0 billion transistors, features up to 512 CUDA
cores. A CUDA core executes a floating point or integer instruction per clock for a thread. The
512 CUDA cores are organized in 16 SMs of 32 cores each. The GPU has six 64-bit memory
partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5 DRAM
memory. A host interface connects the GPU to the CPU via PCl-Express. The GigaThread
global scheduler distributes thread blocks to SM thread schedulers.

©
o
)
=
@
-
o
]
=]
=

GigaThead

Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion
{execution units), and light blue portions (register file and L1 cache).

T

WWW.ARDUER.COM

Third Generation Streaming
Multiprocessor

The third generation SM introduces several
architectural innovations that make it not only the
most powerful SM yet built, but also the most
programmable and efficient.

512 High Performance CUDA cores

Each SM features 32 CUDA CUDA Core
processors—a fourfold Dispaicn Pon
increase over prior SM
designs. Each CUDA
processor has a fully
pipelined integer arithmetic
logic unit (ALU) and floating
point unit (FPU). Prior GPUs used IEEE 754-1985
floating point arithmetic. The Fermi architecture
implements the new IEEE 754-2008 floating-point
standard, providing the fused multiply-add (FMA)
instruction for both single and double precision
arithmetic. FMA improves over a multiply-add

(MAD) instruction by doing the multiplication and

addition with a single final rounding step, with no _
loss of precision in the addition. FMA is more i e
accurate than performing the operations Fermi Streaming Multiprocessor (SM)

separately. GT200 implemented double precision FMA.

In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result,
multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly
designed integer ALU supports full 32-bit precision for all instructions, consistent with standard
programming language requirements. The ALU is optimized to efficiently support 64-bit and
extended precision operations. Various instructions are supported, including Boolean, shift,
move, compare, convert, bit-field extract, bit-reverse insert, and population count.

16 Load/Store Units

Each SM has 16 load/store units, allowing source and destination addresses to be calculated

for sixteen threads per clock. Supporting units load and store the data at each address to
cache or DRAM.

WWW.ARDUER.COM

Four Special Function Units

Special Function Units (SFUs) execute transcendental instructions such as sin, cosine,
reciprocal, and square root. Each SFU executes one instruction per thread, per clock; a warp
executes over eight clocks. The SFU pipeline is decoupled from the dispatch unit, allowing the
dispatch unit to issue to other execution units while the SFU is occupied.

Designed for Double Precision

Double precision arithmetic is at the heart of HPC applications such as linear algebra,
numerical simulation, and guantum chemistry. The Fermi architecture has been specifically
designed to offer unprecedented performance in double precision; up to 16 double precision
fused multiply-add operations can be performed per SM, per clock, a dramatic improvement
over the GT200 architecture.

Double Precision Application Performance

450%

400%
350%

300% ©GT200
Architecture
250%

= Fermi
200% Architecture

150%
100%
[L

50% A1 o
o5 | I 1

Double Precision Matrix Double Precision Tri-Diagonal
Multiply Solver

Early performance evaluations show Fermi performing up to 4.2x faster than
GT200 in double precision applications.

